T. Rex Bone Inlay Necklace
T. Rex Bone Inlay Necklace
This necklace is made with an inlay of Tyrannosaurus rex bone fossil powder, recovered on private land in South Dakota from the Hell Creek Formation and crafted into a handsome pendant right here at Mini Museum.
Measuring 40ft (12m) in length and weighing upwards of 14 tons, Tyrannosaurus rex was one of the largest and most powerful terrestrial predators in history. The most advanced in an 80 million year chain of tyrannosaurid evolution, T. rex had heavy, deep skulls reinforced with sutures, lightened by hollow chambers... and of course, big, sharp teeth!
Each pendant is made by Mini Museum with authentic fossil material. They are set into sterling silver backing and come with an 18" wheat chain.
📸 A T. rex inlay pendant
Made from the Bones of the T. Rex
These pendants are custom made right here at Mini Museum. Each contains fossil Tyrannosaurus rex bone material inlaid with a clear bonding agent. The texture and color of the fossil powder makes for a unique look and the history is astounding.
Pendants measure just under an inch (2.3 cm) and are set into a sterling silver backing with an 18" wheat chain. This is a beautiful treasure from ages long past and a fantastic new piece of jewelry from Mini Museum. The inlay process is all done by hand in order to make the highest quality necklaces we can.
Necklaces are shipped in a padded black jewelry box along with an anti-tarnish back and informational card which serves as a certificate of authenticity.
"We need to start thinking of dinosaurs as not just brutes and not just monsters, and not just things with sharp teeth and sharp claws, but as really active, intelligent, energetic animals that oftentimes had keen senses. An animal like T. rex was a predator that used brain and brawn: its big brain, its great sense of smell and its really keen sense of hearing were probably as important to it, if not more so, than its sharp claws and its sharp teeth and its big jaw muscles." ~ Steve Brusatte, Paleontologist, University of Edinburgh, author of "The Rise and Fall of the Dinosaurs: A New History of a Lost World" (2018)
📸 How do you like your T. rex? With scales or fluffy like a baby chick? The science is still unsettled about adults as depicted here but juveniles definitely had feathers.
Various mechanical studies of T. rex power place the "Tyrant Lizard King" firmly at the top of the charts. Paired with this incredible power, T. rex also had some of the largest teeth of any carnivorous dinosaur, with the largest measuring 1ft (30 cm).
We now know many theropods possessed feathers, including smaller tyrannosauroids such as Dilong and Yutyrannus. Recent evidence suggests that larger tyrannosaurids did not sport full-body feathers as adults, but they certainly did during their early years.
📸 Skulls of Tyrannosauridae: a) Tarbosaurus bataar b) Daspletosaurus torosaurus c) Gorgosaurus libratus d) Bistahieversor e) Albertosaurus sarcophagus f) Tyrannosaurus rex
Most research suggests that T. rex and its fellow large tyrannosaurids (Gorgosaurus, Albertosaurus, and Tarbosaurus) both hunted and scavenged to meet the requirements for powering such huge bodies.
Among the other dinosaurs bearing tyrannosaurid bite marks are ceratopsids, hadrosaurs, and other tyrannosaurs (reflecting the sort of opportunistic cannibalism also widespread among predators). Sauropods such as Alamosaurus, which overlapped with T. rex in North America, and Opisthocoelicaudia, which shared Asian landscapes with Tarbosaurus, may also have been tyrannosaurid quarry.
📸 Tyrannosaurus rex tooth (Mini Museum)
Studies suggest the great tyrannosaurids achieved their huge size through accelerated growth spurts. At the peak of its growth spurt, a young T. rex may have put on the better part of a ton annually.
Bite marks from conspecifics have been found on the skulls of large tyrannosaurids, suggesting they may have bitten each other in dominance or reproductive interactions. It’s possible some species were gregarious, perhaps even pack-hunters; the first known tyrannosaurid trackway, from a Late Cretaceous formation in British Columbia, hints at three animals traveling together.
Despite popular depictions of poor depth perception, studies show that when compared to other giant theropods, tyrannosaurids had a wide postorbital skull which resulted in forward-facing eyes and acute binocular vision.
The spine of a Tyrannosaurus Rex was subject to tremendous force. The size and strength of the vertebrae were essential to providing support for this enormous predator, but the entire apparatus also had to allow for rapid changes in movement and critical striking speed.
Further Reading
Snively, Eric, et al. "Lower rotational inertia and larger leg muscles indicate more rapid turns in tyrannosaurids than in other large theropods." PeerJ 7 (2019): e6432.
Yun, Chan-gyu. Tyrannosaurids didn't use their claws in combat. No. e1207. PeerJ PrePrints, 2015.
Bell, Phil R., et al. "Tyrannosauroid integument reveals conflicting patterns of gigantism and feather evolution." Biology letters 13.6 (2017): 20170092.
Frederickson, J. A., M. H. Engel, and R. L. Cifelli. "Niche Partitioning in Theropod Dinosaurs: Diet and Habitat Preference in Predators from the Uppermost Cedar Mountain Formation (Utah, USA)." Scientific reports 8.1 (2018): 17872.
Longrich, Nicholas R., et al. "Cannibalism in Tyrannosaurus rex." PloS one 5.10 (2010): e13419.
Brusatte, Stephen L. , et al. “Tyrannosaur Paleobiology: New Research on Ancient Exemplar Organisms.” Science, 329, 2010, pp. 1481-1485.
McCrea, Richard T., et al. “A ‘Terror of Tyrannosaurs’: The First Trackways of Tyrannosaurids & Evidence of Gregariousness & Pathology in Tyrannosauridae.” PLOS ONE, 9(7), 2014, pp. 1-13.
Weishampel, David B., et al. (eds). The Dinosauria – Second Edition. University of California Press, 2004.
Insect in Amber - Cretaceous Burmite