Polished Tyrannosaurus Rex Bone - SOLD 1.56" Fossil









Polished Tyrannosaurus Rex Bone - SOLD 1.56" Fossil





































Measuring 40ft (12m) in length and weighing upwards of 14 tons, Tyrannosaurus rex was one of the largest and most powerful terrestrial predators in history. The most advanced in an 80 million year chain of tyrannosaurid evolution, T. rex had heavy, deep skulls reinforced with sutures, lightened by hollow chambers... and of course, big, sharp teeth!
This specimen is a 1.56" showcase Tyrannosaurus rex fossil bone fragment recovered on private land in South Dakota from the Hell Creek Formation. It is estimated to be around 65,500,000 years old. The specimen has been polished to enhance its natural beauty. It is an incredible piece of evolutionary history and comes with a photo card serving as statement of authenticity.

📸 POLISHED T-REX BONE FRAGMENT
The Bones of a King
Various mechanical studies of T. rex power place the "Tyrant Lizard King" firmly at the top of the charts. Paired with this incredible power, T. rex also had some of the largest teeth of any carnivorous dinosaur, with the largest measuring 1ft (30 cm).
We now know many theropods possessed feathers, including smaller tyrannosauroids such as Dilong and Yutyrannus. Recent evidence suggests that larger tyrannosaurids did not sport full-body feathers as adults, but they certainly did during their early years.
Studies suggest the great tyrannosaurids achieved their huge size through accelerated growth spurts. At the peak of its growth spurt, a young T. rex may have put on the better part of a ton annually.

📸 FRAGMENT IN HAND
This specimen is a fragment of Tyrannosaurus rex bone, recovered on private land in South Dakota from the Hell Creek Formation. It is estimated to be around 65,500,000 years old.
Spanning the final years of the upper Cretaceous as well as the lower Paleocene, Hell Creek is a snapshot of the last years of the Age of Dinosaurs, preserving both Tyrannosaurus rex and its unlucky prey.
To enhance the fossil's natural beauty, the fragment has been polished, providing a beautiful luster. The fossil comes complete with an informational photo card providing more details on the specimen.

More About T. rex

📸 Skulls of Tyrannosauridae: a) Tarbosaurus bataar b) Daspletosaurus torosaurus c) Gorgosaurus libratus d) Bistahieversor e) Albertosaurus sarcophagus f) Tyrannosaurus rex
Most research suggests that T. rex and its fellow large tyrannosaurids (Gorgosaurus, Albertosaurus, and Tarbosaurus) both hunted and scavenged to meet the requirements for powering such huge bodies.
Among the other dinosaurs bearing tyrannosaurid bite marks are ceratopsids, hadrosaurs, and other tyrannosaurs (reflecting the sort of opportunistic cannibalism also widespread among predators). Sauropods such as Alamosaurus, which overlapped with T. rex in North America, and Opisthocoelicaudia, which shared Asian landscapes with Tarbosaurus, may also have been tyrannosaurid quarry.

Studies suggest the great tyrannosaurids achieved their huge size through accelerated growth spurts. At the peak of its growth spurt, a young T. rex may have put on the better part of a ton annually.
Bite marks from conspecifics have been found on the skulls of large tyrannosaurids, suggesting they may have bitten each other in dominance or reproductive interactions. It’s possible some species were gregarious, perhaps even pack-hunters; the first known tyrannosaurid trackway, from a Late Cretaceous formation in British Columbia, hints at three animals traveling together.

Despite popular depictions of poor depth perception, studies show that when compared to other giant theropods, tyrannosaurids had a wide postorbital skull which resulted in forward-facing eyes and acute binocular vision.
The spine of a Tyrannosaurus rex was subject to tremendous force. The size and strength of the vertebrae were essential to providing support for this enormous predator, but the entire apparatus also had to allow for rapid changes in movement and critical striking speed.
Further Reading
Snively, Eric, et al. "Lower rotational inertia and larger leg muscles indicate more rapid turns in tyrannosaurids than in other large theropods." PeerJ 7 (2019): e6432.
Yun, Chan-gyu. Tyrannosaurids didn't use their claws in combat. No. e1207. PeerJ PrePrints, 2015.
Bell, Phil R., et al. "Tyrannosauroid integument reveals conflicting patterns of gigantism and feather evolution." Biology letters 13.6 (2017): 20170092.
Frederickson, J. A., M. H. Engel, and R. L. Cifelli. "Niche Partitioning in Theropod Dinosaurs: Diet and Habitat Preference in Predators from the Uppermost Cedar Mountain Formation (Utah, USA)." Scientific reports 8.1 (2018): 17872.
Longrich, Nicholas R., et al. "Cannibalism in Tyrannosaurus rex." PloS one 5.10 (2010): e13419.
Brusatte, Stephen L. , et al. “Tyrannosaur Paleobiology: New Research on Ancient Exemplar Organisms.” Science, 329, 2010, pp. 1481-1485.
McCrea, Richard T., et al. “A ‘Terror of Tyrannosaurs’: The First Trackways of Tyrannosaurids & Evidence of Gregariousness & Pathology in Tyrannosauridae.” PLOS ONE, 9(7), 2014, pp. 1-13.
Weishampel, David B., et al. (eds). The Dinosauria – Second Edition. University of California Press, 2004.
Carabajal, Ariana Paulina, et al. “Two Braincases of Daspletosaurus.” Canadian Journal of Earth Sciences, vol. 58, no. 9, 2021, p. 885–, https://doi.org/10.1139/cjes-2020-0185.
Hone, Dwe, and D. H. Tanke. “Pre- and Postmortem Tyrannosaurid Bite Marks on the Remains of Daspletosaurus (Tyrannosaurinae: Theropoda) from Dinosaur Provincial Park, Alberta, Canada.” PeerJ (San Francisco, CA), vol. 3, 2015, pp. e885–e885, https://doi.org/10.7717/peerj.885.
Voris, Jared T., et al. “Reassessment of a Juvenile Daspletosaurus from the Late Cretaceous of Alberta, Canada with Implications for the Identification of Immature Tyrannosaurids.” Scientific Reports, vol. 9, no. 1, 2019, pp. 17801–10, https://doi.org/10.1038/s41598-019-53591-7.
Warshaw, Elías A., and Denver W. Fowler. “A Transitional Species of Daspletosaurus Russell, 1970 from the Judith River Formation of Eastern Montana.” PeerJ (San Francisco, CA), vol. 10, 2022, pp. e14461–e14461, https://doi.org/10.7717/peerj.14461.
Therrien, François, et al. “Bite Me: Biomechanical Models of Theropod Mandibles and Implications for Feeding Behavior.” The Carnivorous Dinosaurs, edited by Kenneth Carpenter, Indiana University Press, Bloomington, Indiana, 2005, pp. 179–237.
Curie, Philip J. “An Unusual Multi-Individual Bonebed in the Two Medicine Formation (Late Campanian) of Montana (USA).” The Carnivorous Dinosaurs, edited by Kenneth Carpenter, Indiana University Press, Bloomington, Indiana, 2005.
Hurum, J. H., Karol Sabath, and P. J. Currie. "Skull structure and evolution in tyrannosaurid dinosaurs." (2003).
Carr, Thomas D., et al. "A new tyrannosaur with evidence for anagenesis and crocodile-like facial sensory system." Scientific Reports 7.1 (2017): 44942.
Erickson, Gregory M., et al. "Gigantism and comparative life-history parameters of tyrannosaurid dinosaurs." Nature 430.7001 (2004): 772-775.