Zerfall von Pangaea
Zerfall von Pangaea

Oben: Vorderseite der Musterkarte
Dieses Exemplar ist ein poliertes Diabasfragment aus den Lagerstätten der Central Atlantic Magmatic Province im Osten Nordamerikas. Ähnlich wie das Exemplar in der Acrylversion des Mini-Museums, aber deutlich größer, befindet sich das Objekt in einem Acryl-Probengefäß und einer 10 x 7,6 x 2,5 cm großen Riker-Vitrine mit Glasdeckel. Dem Exemplar liegt eine kleine Informationskarte bei.
Über Pangaea
„Unser Planet ist ein unruhiges Zuhause.“ ~ Sean C. Solomon, Vorsitzender der NASA Solid Earth Science Working Group, 2002
Angetrieben durch die Hitze des Erdkerns wirbeln Konvektionsströme die festen Silikate des Erdmantels auf, schieben und ziehen die dünnen Krustenplatten, wodurch Kontinente in Zyklen, die Hunderte von Millionen Jahren andauern können, zusammengeführt und wieder auseinandergerissen werden. Diese Verschiebungen können auch dazu führen, dass mehrere Kontinente so nahe beieinander liegen, dass sie eine einzige Landmasse über dem Meeresspiegel bilden. Diese Ansammlungen werden als Superkontinente bezeichnet; der bekannteste davon ist Pangäa.
Pangäa entstand vor etwa 335 Millionen Jahren und bestand etwa 160 Millionen Jahre lang als einheitliche Landmasse. Der Zerfall erfolgte nach einer Reihe gewaltiger Riftereignisse, bei denen starke Magmastöße die Kontinentalplatten an ihren Nähten auseinanderdrückten, wodurch neue Kruste entstand und das Becken geöffnet wurde, in dem schließlich der Atlantische Ozean entstand. Reste dieser Flutbasalte finden sich in ehemaligen Riftzonen im heutigen Marokko, Südwesteuropa, dem Amazonasbecken und im Osten Nordamerikas.
Das Ausgangsgestein wurde vom Luck Stone-Steinbruch in der Nähe des Schlachtfelds des amerikanischen Bürgerkriegs in Manassas in Nord-Virginia gespendet. Der Steinbruch ist ein großartiger Ort, von dem aus man deutlich eines der Grabenbrüche sehen kann, die den alten Superkontinent durchzogen und einst möglicherweise zum Atlantischen Ozean wurden.
📸 A sample of rock from the CAMP basalts in Luck Stone quarry
TAKE A TRIP TO PANGEA!
Driven by heat from the core, convection currents churn the solid silicates of the mantle, pushing and pulling the thin plates of crust, bringing continents together and tearing them apart in cycles which can last for hundreds of millions of years. This shifting can also bring several continents into close enough proximity to form a single landmass above sea level. These clusters are known as supercontinents; the most famous of which is Pangea.
Pangea formed roughly 335,000,000 years ago and existed as a single landmass for approximately 160,000,000 years. The breakup came after a series of powerful rifting events in which strong pulses of magma forced continental plates apart at the seams, creating new crust and opening up the basin in which the Atlantic Ocean eventually took shape.
Known as the Central Atlantic Magmatic Province (CAMP), the extant remnants of these flood basalts can be found in former rifts located in modern-day Morocco, Southwestern Europe, the Amazon River Basin, and Eastern North America.
This specimen is a polished diabase fragment from the Central Atlantic Magmatic Province deposits of Eastern North America. It comes affixed to its informational card which also serves as certificate of authenticity.
The source rock was donated by the Luck Stone quarry adjacent to the Manassas U.S. Civil War battlefield in Northern Virginia. The quarry is a magnificent location where it is possible to clearly see one of the rift valleys which tore through the ancient supercontinent and might once have become the Atlantic Ocean.
MORE ABOUT PANGEA
📸 WEGENER'S PANGEA MODE
DISCOVERING THE SUPERCONTINENT
As with other major geological events, CAMP was not simply a gentle shifting of landmass. The upheaval correlates with another massive extinction event in the fossil record: the Triassic–Jurassic extinction event. Nearly half of all species on Earth became extinct during this event, and it is considered the final clearing point which allowed the dinosaurs to cement their dominance for the next 135,000,000 years.
The hard surface of our planet, the lithosphere, is broken into plates which wander over time. Just over one hundred years ago, in 1912, Alfred Wegener proposed that all the continents once formed a single supercontinent he named Pangea. The basic concepts underlying his continental drift theory were eventually accepted and incorporated into plate tectonics in the 1960s.
However, Pangea is only the most recent supercontinent. Before Pangea there were two supercontinents: Laurasia in the north (North America, Greenland, Europe, and northern Asia) and Gondwana in the south (South America, Africa, Antarctica, Australia and India).
📸 EARTH IN 250 MILLION YEARS
The Next Supercontinent
Pangaea was not a singular event but part of a continuing planetary rhythm known as the supercontinent cycle. Over billions of years, the continents have joined together and drifted apart many times. The same mantle currents that once tore Pangaea apart are still at work beneath our feet, slowly carrying the continents toward their next union. In roughly 200 to 250 million years, those movements will bring the landmasses together again to form a new world.
Scientists have proposed different visions of what that future supercontinent might look like. One model, called Pangaea Proxima, suggests that the Atlantic Ocean will continue to widen before reversing course. The Americas would eventually move back toward Africa and Eurasia, gathering the continents around the basin that once held the Indian Ocean. Another possibility, known as Amasia, imagines the closure of the Pacific Ocean as the Americas drift westward to meet Asia, with Antarctica moving north to join the new landmass near the top of the world.
📸 PANGEA WITH MODERN BORDERS
Whatever form it takes, the next supercontinent will transform the planet as completely as Pangaea once did. A vast single landmass would limit the moderating effect of the oceans, creating deep interior deserts and sharp seasonal extremes. As the ocean ridges slow and the seafloor cools, the water of the world will retreat, exposing wide continental shelves and lowering global sea levels. Life will change in response, just as it always has. Harsh conditions will push some species to extinction while others adapt and thrive, beginning a new cycle of evolution.
To imagine the next supercontinent is to look forward into the same forces that shaped our distant past. The continents continue to wander, and in their slow journey they carry the memory of every world that came before.
Further Reading
Marzoli, Andrea, Paul R. Renne, Enzo M. Piccirillo, Marcia Ernesto, Giuliano Bellieni and Angelo De Min. "Extensive 200-Million-Year-Old Continental Flood Basalts of the Central Atlantic Magmatic Province." Science 284 (1999): 616-618. Researchgate.net. Web. 12 March 2018.
Rogers, John J.W. and M. Santosh. Continents and Supercontinents. Oxford University Press, 2004. EBSCOhost.com. Web. 12 March 2018.
Safonova, Inna, and Shigenori Maruyama. "Asia: a frontier for a future supercontinent Amasia." International Geology Review 56.9 (2014): 1051-1071.
Solomon, S. C., and Solid Earth Science Working Group. "Living on a restless planet." Solid Earth Science Working Group Report. Available from http://solidearth.jpl.nasa.gov/PDF/SESWG_final_combined.pdf (2002).
Torsvik, Trond H. and L. Robin M. Cocks. "From Wegener until now: the development of our understanding of Earth's Phanerozoic evolution." GEOLOGICA BELGICA 15.3 (2012): 181-192. EBSCOhost.com Web. 12 March 2018.